Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Occup Ther ; 78(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305818

RESUMO

IMPORTANCE: Handedness and motor asymmetry are important features of occupational performance. With an increased understanding of the basic neural mechanisms surrounding handedness, clinicians will be better able to implement targeted, evidence-based neurorehabilitation interventions to promote functional independence. OBJECTIVE: To review the basic neural mechanisms behind handedness and their implications for central and peripheral nervous system injury. DATA SOURCES: Relevant published literature obtained via MEDLINE. FINDINGS: Handedness, along with performance asymmetries observed between the dominant and nondominant hands, may be due to hemispheric specializations for motor control. These specializations contribute to predictable motor control deficits that are dependent on which hemisphere or limb has been affected. Clinical practice recommendations for occupational therapists and other rehabilitation specialists are presented. CONCLUSIONS AND RELEVANCE: It is vital that occupational therapists and other rehabilitation specialists consider handedness and hemispheric lateralization during evaluation and treatment. With an increased understanding of the basic neural mechanisms surrounding handedness, clinicians will be better able to implement targeted, evidence-based neurorehabilitation interventions to promote functional independence. Plain-Language Summary: The goal of this narrative review is to increase clinicians' understanding of the basic neural mechanisms related to handedness (the tendency to select one hand over the other for specific tasks) and their implications for central and peripheral nervous system injury and rehabilitation. An enhanced understanding of these mechanisms may allow clinicians to better tailor neurorehabilitation interventions to address motor deficits and promote functional independence.


Assuntos
Lateralidade Funcional , Mãos , Humanos , Lateralidade Funcional/fisiologia , Mãos/fisiologia , Sistema Nervoso Periférico , Idioma
2.
Exp Brain Res ; 240(10): 2791-2802, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36066589

RESUMO

Handedness is often thought of as a hand "preference" for specific tasks or components of bimanual tasks. Nevertheless, hand selection decisions depend on many factors beyond hand dominance. While these decisions are likely influenced by which hand might show performance advantages for the particular task and conditions, there also appears to be a bias toward the dominant hand, regardless of performance advantage. This study examined the impact of hand selection decisions and workspace location on reaction time and movement quality. Twenty-six neurologically intact participants performed targeted reaching across the horizontal workspace in a 2D virtual reality environment, and we compared reaction time across two groups: those selecting which hand to use on a trial-by-trial basis (termed the choice group) and those performing the task with a preassigned hand (the no-choice group). Along with reaction time, we also compared reach performance for each group across two ipsilateral workspaces: medial and lateral. We observed a significant difference in reaction time between the hands in the choice group, regardless of workspace. In contrast, both hands showed shorter but similar reaction times and differences between the lateral and medial workspaces in the no-choice group. We conclude that the shorter reaction times of the dominant hand under choice conditions may be due to dominant hand bias in the selection process that is not dependent upon interlimb performance differences.


Assuntos
Lateralidade Funcional , Desempenho Psicomotor , Mãos , Humanos , Movimento , Tempo de Reação
3.
BMC Neurol ; 22(1): 141, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413856

RESUMO

BACKGROUND: We previously characterized hemisphere-specific motor control deficits in the ipsilesional, less-impaired arm of unilaterally lesioned stroke survivors. Our preliminary data indicate these deficits are substantial and functionally limiting in patients with severe paresis. METHODS: We have designed an intervention ("IPSI") to remediate the hemisphere-specific deficits in the ipsilesional arm, using a virtual-reality platform, followed by manipulation training with a variety of real objects, designed to facilitate generalization and transfer to functional behaviors encountered in the natural environment. This is a 2-site (primary site - Penn State College of Medicine, secondary site - University of Southern California), two-group randomized intervention with an experimental group, which receives unilateral training of the ipsilesional arm throughout 3 one-hour sessions per week for 5 weeks, through our Virtual Reality and Manipulation Training (VRMT) protocol. Our control group receives a conventional intervention on the contralesional arm, 3 one-hour sessions per week for 5 weeks, guided by recently released practice guidelines for upper limb rehabilitation in adult stroke. The study aims to include a total of 120 stroke survivors (60 per group) whose stroke was in the territory of the middle cerebral artery (MCA) resulting in severe upper-extremity motor impairments. Outcome measures (Primary: Jebsen-Taylor Hand Function Test, Fugl-Meyer Assessment, Abilhand, Barthel Index) are assessed at five evaluation points: Baseline 1, Baseline 2, immediate post-intervention (primary endpoint), and 3-weeks (short-term retention) and 6-months post-intervention (long-term retention). We hypothesize that both groups will improve performance of the targeted arm, but that the ipsilesional arm remediation group will show greater improvements in functional independence. DISCUSSION: The results of this study are expected to inform upper limb evaluation and treatment to consider ipsilesional arm function, as part of a comprehensive physical rehabilitation strategy that includes evaluation and remediation of both arms. TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov (Registration ID: NCT03634397 ; date of registration: 08/16/2018).


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Ensaios Clínicos Fase II como Assunto , Estado Funcional , Humanos , Paresia/etiologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Resultado do Tratamento , Extremidade Superior
4.
Exp Brain Res ; 239(2): 655-665, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33388816

RESUMO

Speed accuracy trade-off, the inverse relationship between movement speed and task accuracy, is a ubiquitous feature of skilled motor performance. Many previous studies have focused on the dominant arm, unimanual performance in both simple tasks, such as target reaching, and complex tasks, such as overarm throwing. However, while handedness is a prominent feature of human motor performance, the effect of limb dominance on speed-accuracy relationships is not well-understood. Based on previous research, we hypothesize that dominant arm skilled performance should depend on visual information and prior task experience, and that the non-dominant arm should show greater skill when no visual information nor prior task information is available. Forty right-handed young adults reached to 32 randomly presented targets across a virtual reality workspace with either the left or the right arm. Half of the participants received no visual feedback about hand position throughout each reach. Sensory information and task experience were lowest during the first cycle of exposure (32 reaches) in the no-vision condition, in which visual information about motion was not available. Under this condition, we found that the left arm group showed greater skill, measured in terms of position error normalized to speed, and by error variability. However, as task experience and sensory information increased, the right arm group showed substantial improvements in speed-accuracy relations, while the left arm group maintained, but did not improve, speed-accuracy relations throughout the task. These differences in performance between dominant and non-dominant arm groups during the separate stages of the task are consistent with complimentary models of lateralization, which propose different proficiencies of each hemisphere for different features of control. Our results are incompatible with global dominance models of handedness that propose dominant arm advantages under all performance conditions.


Assuntos
Braço , Desempenho Psicomotor , Fenômenos Biomecânicos , Lateralidade Funcional , Mãos , Humanos , Movimento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...